

Peschiamo nel mare della complessità...

Maria Francesca Carfora

Istituto per le Applicazioni del Calcolo *M. Picone*Consiglio Nazionale delle Ricerche

Ciliegia di CICEO Vignola

La Ciliegia di Vignola IGP si riferisce ai frutti freschi delle seguenti cultivar di ciliegio: Early Bigi e Lory, ..., Mora di Vignola (precoci), ... Durone Nero, Black Star, ... Summer Charm (Staccato) (tardive). La zona di produzione della Ciliegia di Vignola IGP interessa alcuni comuni delle province di Modena e Bologna posti nella fascia altimetrica che va dai 30 fino ai 950 metri s.l.m., nella regione Emilia-Romagna.

La Ciliegia di Vignola IGP è un frutto dal sapore dolce e fruttato. La sua polpa è consistente e croccante, ... La buccia ha un colore che varia dal rosso brillante al rosso scuro, tranne che per la varietà Durone della Marca, dove invece risulta sempre lucente ma di colore giallo e rosso brillante. I calibri minimi sono di 20-23 mm a seconda della varietà, mentre i massimi possono superare 28 mm.

Ciliegia di Vignola

fenotipo/ genotipo

Info geografiche

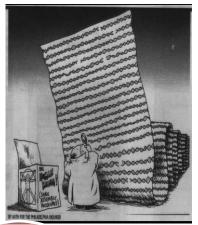
La Ciliegia di Vignola IGP si riferisce ai crecipio frutti freschi delle seguenti cultivar di ciliegio: Early Bigi e Lory, ..., Mora di Vignola (precoci), ... Durone Nero, Black Star, ... Summer Charm (Staccato) (tardive). La zona di produzione della Ciliegia di Vignola IGP interessa alcuni comuni delle province di Modena e Bologna posti nella fascia altimetrica che va dai 30 fino ai 950 metri s.l.m., nella regione Emilia-Romagna.

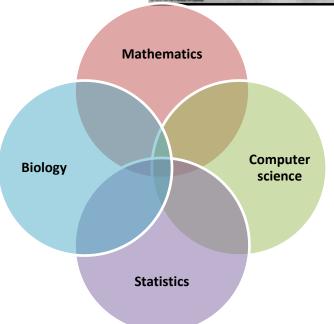
Aspetto, sapore...

La Ciliegia di Vignola IGP è un frutto dal sapore dolce e fruttato. La sua polpa è consistente e croccante, ... La buccia ha un colore che varia dal rosso brillante al rosso scuro, tranne che per la varietà Durone della Marca, dove invece risulta sempre lucente ma di colore giallo e rosso brillante. I calibri minimi sono di 20-23 mm a seconda della varietà, mentre i massimi possono superare 28 mm.

Un esempio di gestione ed analisi di dati complessi

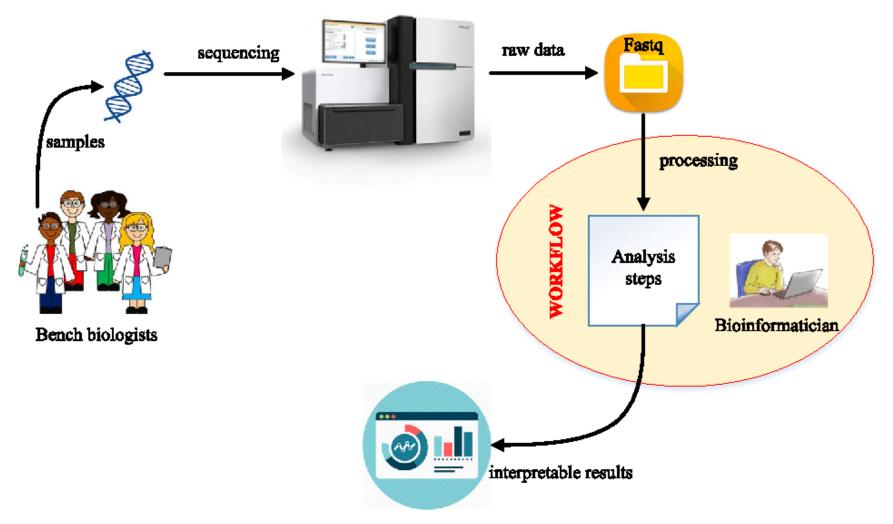
OLIVEHEALTH PARTENARIATO NEWS ATTIVITA' ARCHIVIO NEWS CONTATTI Identificazione delle componenti salutistiche della filiera olivicola campana





Cosa può fare la matematica?

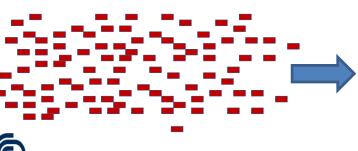
- Sviluppare metodi computazionali ed algoritmi per <u>assemblare dati</u> con grande affidabilità ed efficienza
- **Decriptare l'informazione** contenuta nei genomi, trascrittomi, etc., ed identificare differenze e strutture all'interno di tali dati
- Estrarre informazioni e conoscenza dai dati attraverso la loro analisi statistica
- Integrare diversi tipi di dati ed informazioni in sistemi intelligenti
- Sviluppare modelli dinamici e sistemi computazionali in grado di simulare l'effetto di specifiche variazioni, l'azione di farmaci e terapie, la progressione di patologie, etc



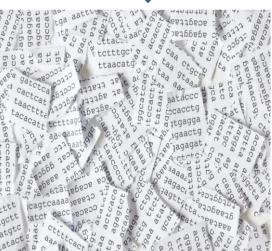
Analisi di dati genici

Sequenziatori

Come mettere insieme tutta questa informazione?


2007-2012

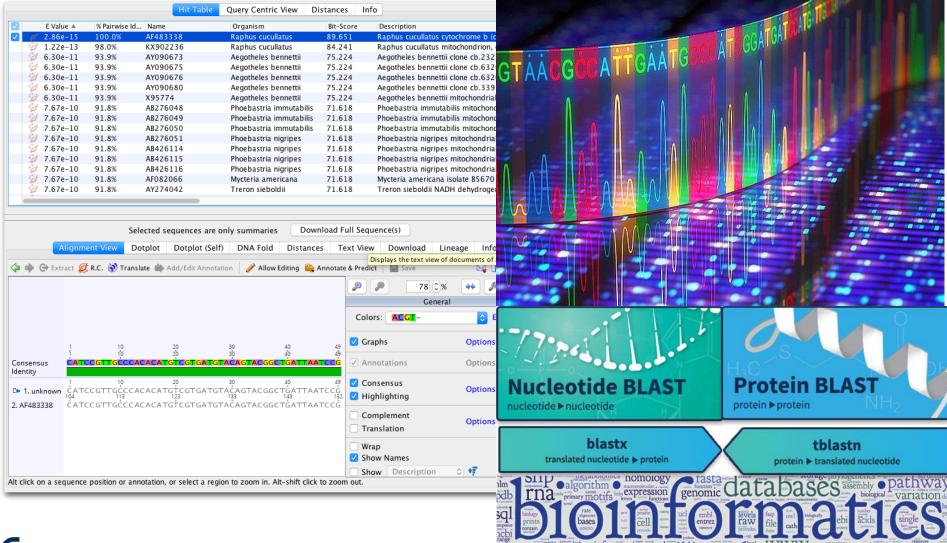
Sequenziamento



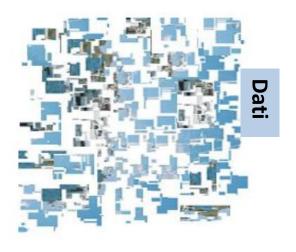
CGGTCTGGATGC GCGGTCTGGATG GCGGTCTGGAT GGCGGTCTGGAT GGCGGTCTGGA TCTATGCGGGCCCCT TCTATGCGGGCCCC **ATCTATGCGGGCC TATCTATGCGGGC TTATCTATGCGGG** CTTATCTATGCGGG

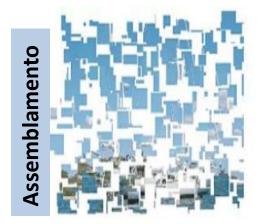
GGTCTGGATGC

Milioni o centinaia di milioni di sequenze



Banche dati e software





Risolvere un puzzle

Algoritmi

Risolvere il DNA puzzle

CNR Campania REte Outreach

Negli studi sul **genoma umano** si devono allineare **decine di milioni o centinaia di milioni di sequenze** su un riferimento che ha circa **3 miliardi di basi**

TGCATGCTTAGTGC

TGCATGCTTAGTGC

Sequenze prodotte

ACCTGATGCTAGCTAGCTTGGCAACTTGATTAACAGTGCATGCTTAGTG

Allineamento al genoma di riferimento

Potenziale mutazione

Genoma di riferimento

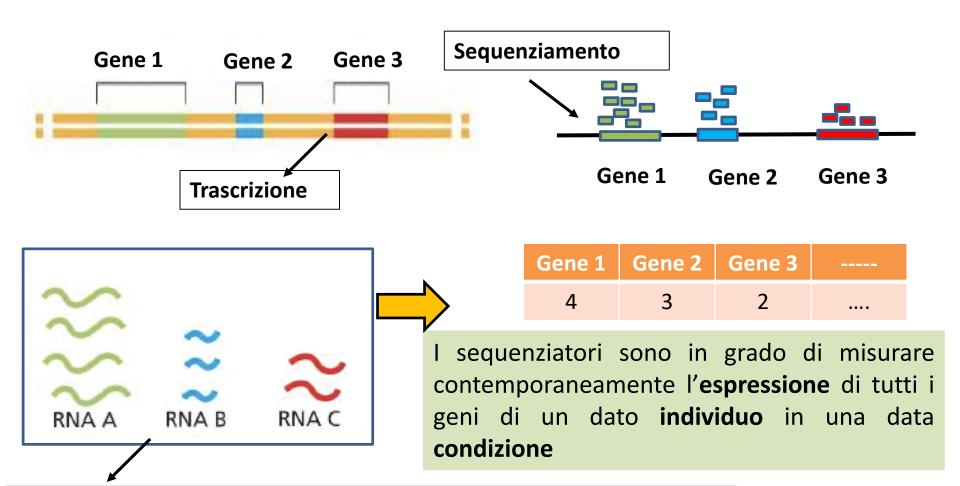
TGCATGCTTAGTGC

TGCATGCTTAGTGC

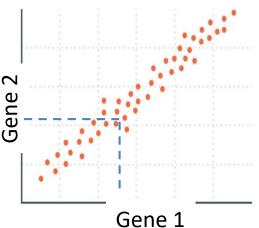
ACCTGATGCTAGCTA

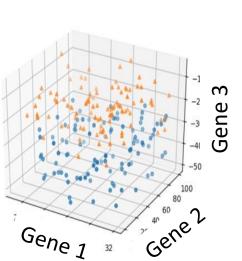
TGGCAACTC GATTAA

TGCATGCTTAGTGC


ACCTGATGCTAGCTAGCTTGGCAACTTGATTAACAGTGCATGCTTAGTG

La misurazione dell'espressione genica


Traduzione: gli RNA codificanti vengono trasformati in proteine



Visualizzazione dei dati

Consiglio Nazionale delle Ricerche

Campione	Gene 1	Gene 2	
Individuo 1	17	14	
Individuo 2	48	56	
Individuo 3	20	25	
Individuo N	33	47	

Rappresentazione di una tabella di dati di **2** dimensioni

Ogni punto rappresenta un individuo.

La posizione del punto dipende dalle variabili misurate

Campione	Gene 1	Gene 2	Gene 3	
Individuo 1	17	14	20	Denomorphanico di
Individuo 2	48	56	34	Rappresentazione di una tabella di dati di
Individuo 3	20	25	15	3 dimensioni
	•••	•••	•••	
Individuo N	33	47	27	

Dati in Alta dimensione

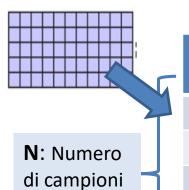
Quando si misura

dei

circa

l'espressione

geni P


30.000

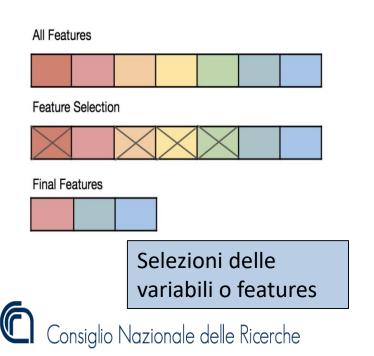
- Come rappresentare i dati quando il numero delle dimensioni (variabili) è maggiore di 3?
- Come rappresentare i dati quando il numero delle dimensioni P è estremamente grande?

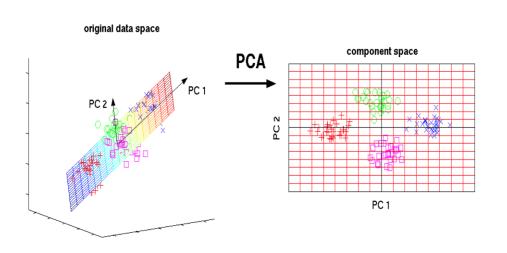
→ La maledizione della Dimensionalità

Matrice X dei dati

P: Numero di dimensioni o variabili

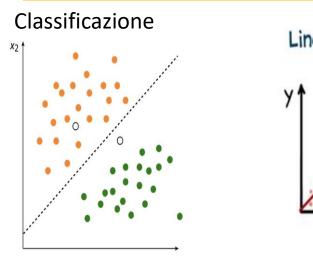
Campione	Gene 1	Gene 2	Gene 3	••••	Gene P
Individuo 1	17	14	20		
Individuo 2	48	56	34	•••	
Individuo 3	20	25	15		
Individuo N	33	47	27		

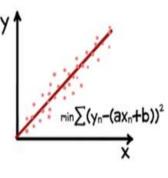

Un individuo/campione può essere visto come un punto in uno spazio di **P** dimensioni



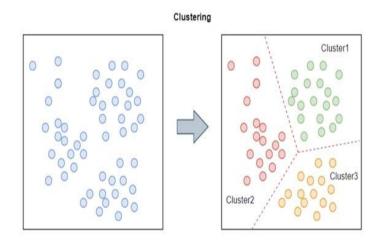
Riduzione della Dimensionalità

- Molte variabili sono poco rilevanti oppure contengono informazione ridondante → solo alcune sono importanti, oppure si possono opportunamente combinare
- Si cerca di **approssimare** i dati in **spazi di dimensione inferiore** (solitamente anche molto piccola) cercando di catturare la maggior parte delle informazioni


Proiezione in sotto-spazi di dimensione inferiore


L'apprendimento statistico

Apprendimento supervisionato



Linear Regression

Consente di fare **predizione** su nuovi dati **dopo aver imparato** una regola a partire da **esempi noti**, ad esempio la **classificazione** consente di riconoscere elementi simili ad esempi precedentemente appresi.

Apprendimento non supervisionato

Consente di individuare **strutture** nascoste all'interno di insiemi di dati in cui **non sono note informazioni aggiuntive**, ad esempio il **clustering** consente di raggruppare elementi simili tra loro sulla base di caratteristiche misurate

